210 research outputs found

    Detection of 'best' positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial

    Get PDF
    Introduction: This study compares different parameters derived from electrical impedance tomography (EIT) data to define 'best' positive end-expiratory pressure (PEEP) during a decremental PEEP trial in mechanically-ventilated patients. 'Best' PEEP is regarded as minimal lung collapse and overdistention in order to prevent ventilator-induced lung injury.Methods: A decremental PEEP trial (from 15 to 0 cm H2O PEEP in 4 steps) was performed in 12 post-cardiac surgery patients on the ICU. At each PEEP step, EIT measurements were performed and from this data the following were calculated: tidal impedance variation (TIV), regional compliance, ventilation surface area (VSA), center of ventilation (COV), regional ventilation delay (RVD index), global inhomogeneity (GI index), and intratidal gas distribution. From the latter parameter we developed the ITV index as a new homogeneity parameter. The EIT parameters were compared with dynamic compliance and the PaO2/FiO2 ratio.Results: Dynamic compliance and the PaO2/FiO2 ratio had the highest value at 10 and 15 cm H2O PEEP, respectively. TIV, regional compliance and VSA had a maximum value at 5 cm H2O PEEP for the non-dependent lung region and a maximal value at 15 cm H2O PEEP for the dependent lung regio

    Ventilation area measured with eit in order to optimize peep settings in mechanically ventilated patients

    Get PDF
    INTRODUCTION. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique, which can be used to visualize ventilation. Ventilation will be measured by impedance changes due to ventilation. OBJECTIVES. The aim of this study was to optimize PEEP settings based on the ventilation area of EIT images during a decremental PEEP trial. METHODS. After a recruitment maneuver, a decremental PEEP trial was performed in 10 mechanically ventilated post cardiac surgery patients. Ventilation area, blood gases, FRC and compliance were measured at each PEEP level. The ventilation area was defined as the surface of ventilation at one lung slice measured with EIT and was expressed as percentage of its maximum obtained during a recruitment maneuver (RM). RESULTS. The amount of ventilated pixels during the RM is set as 100 %. Figure 1 shows the amount of ventilated pixels as percentage compared to its maximum during the RM. The ventilation area was significantly smaller at 5 and 0 PEEP compared to its maximum at both the dependent and non-dependent lung. Also PaO2/FiO2 and FRC were significantly lower at these PEEP levels. (Figure presented) Bars represent the mean + SD. Black = dependent lung region, White = non-dependent lung region. *

    Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit

    Get PDF
    Background Stress and strain are parameters to describe respiratory mechanics during mechanical ventilation. Calculations of stress require invasive and difficult to perform esophageal pressure measurements. The hypothesis of the present study was: Can lung stress be reliably calculated based on non-invasive lung volume measurements, during a decremental Positive end-expiratory pressure (PEEP) trial in mechanically ventilated patients with different diseases? Methods Data of 26 pressure-controlled ventila

    Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients

    Get PDF
    Background Homogeneous ventilation is important for prevention of ventilator-induced lung injury. Electrical impedance tomography (EIT) has been used to identify optimal PEEP by detection of homogenous ventilation in non-dependent and dependent lung regions. We aimed to compare the ability of volumetric capnography and EIT in detecting homogenous ventilation between these lung regions. Methods Fiftee

    Excessive extracellular ATP desensitizes P2Y2 and P2X4 ATP receptors provoking surfactant impairment ending in ventilation-induced lung injury

    Get PDF
    Stretching the alveolar epithelial type I (AT I) cells controls the intercellular signaling for the exocytosis of surfactant by the AT II cells through the extracellular release of adenosine triphosphate (ATP) (purinergic signaling). Extracellular ATP is cleared by extracellular ATPases, maintaining its homeostasis and enabling the lung to adapt the exocytosis of surfactant to the demand. Vigorous deformation of the AT I cells by high mechanical power ventilation causes a massive release of extracellular ATP beyond the clearance capacity of the extracellular ATPases. When extracellular ATP reaches levels >100 μM, the ATP receptors of the AT II cells become desensitized and surfactant impairment is initiated. The resulting alteration in viscoelastic properties and in alveolar opening and collapse time-constants leads to alveolar collapse and the redistribution of inspired air from the alveoli to the alveolar ducts, which become pathologically dilated. The collapsed alveoli connected to these dilated alveolar ducts are subject to a massive strain, exacerbating the ATP release. After reaching concentrations >300 μM extracellular ATP acts as a danger-associated molecular pattern, causing capillary leakage, alveolar space edema, and further deactivation of surfactant by serum proteins. Decreasing the tidal volume to 6 mL/kg or less at this stage cannot prevent further lung injury

    Hadroproduction of the Chi1 and Chi2 States of Charmonium in 800 GeV/c Proton-Silicon Interactions

    Full text link
    The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.Comment: 4 pages, 4 figure

    Analysis and compensation for errors in electrical impedance tomography images and ventilation-­related measures due to serial data collection

    Get PDF
    Electrical impedance tomography (EIT) is increasingly being used as a bedside tool for monitoring regional lung ventilation. However, most clinical systems use serial data collection which, if uncorrected, results in image distortion, particularly at high breathing rates. The objective of this study was to determine the extent to which this affects derived parameters. Raw EIT data were acquired with the GOE­MF II EIT device (CareFusion, Höchberg, Germany) at a scan rate of 13 images/s during both spontaneous breathing and mechanical ventilation. Boundary data for periods of undisturbed tidal breathing were corrected for serial data collection errors using a Fourier based algorithm. Images were reconstructed for both the corrected and original data using the GREIT algorithm, and parameters describing the filling characteristics of the right and left lung derived on a breath by breath basis. Values from the original and corrected data were compared using paired t­ tests. Of the 33 data sets, 23 showed significant differences in filling index for at least one region, 11 had significant differences in calculated tidal impedance change and 12 had significantly different filling fractions (p = 0.05). We conclude that serial collection errors should be corrected before image reconstruction to avoid clinically misleading results

    Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis

    Get PDF
    Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.publishedVersio
    • …
    corecore